A code generator for ODE-based models

R_package rodeo

david.kneis@tu-dresden.de

Outline

Introduction
Objectives
Concepts
Minimalistic example
Specific features \& limitations
Applications
Summary
Hands-on part

Outline

Introduction
Objectives
Concepts
Minimalistic example
Speciffic features \& Ilmitations
Applications
Summary
Hands-on part

Introduction

Background

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

Introduction

Background

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

Introduction

Background

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

Introduction

Background

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

\rightarrow Several years of model/software development

Re-invention of the wheel?

- Best way to learn modeling is via model development.
- 'Monolithic codes' are hard to extend.
- Rising interest in structural uncertainty
\rightarrow Need for Re-implementations

Outline

Introduction
Objectives
Concepts
Minimalistic example
Speciffic features \& Ilmitations
Applications
Summary
Hands-on part

Objectives

- Often incomplete or outdated
- Mistakes in published equations
- Source code alone not sufficient
\rightarrow Embedded / automatic documentation

Objectives

Portability \& life time

- Implementation in specific language / framework
- Impedes collaborative development
- Software undergoes aging
\rightarrow True portability
\rightarrow Equations to be separated from source code

Objectives

Handling of large arrays

- Access by index: Hard to read / maintain
- Access by name: Slow
\rightarrow Combine the two options

Objectives

Computational efficiency

- Interpreted code is convenient but relatively slow
- Need for high-performance (Optimization, Uncertainty, ...)
\rightarrow Use compiled code sections

Objectives

- Repeated evaluation wastes time
- Code is difficult to maintain
\rightarrow Use proper notation to reduce redundancies
\rightarrow Let the compiler eliminate them
- Effort for users
- Individual pre-/post-processors
- Impedes coupling of models
\rightarrow Unified interface

Objectives
 Wish list

- Built-in documentation
- True portability
- Save \& fast array access
- Compiled code sections
- Less redundancies
- Unified interface
\rightarrow rodeo is one attempt, among others, to achieve this
- Models built on simultaneous ODE

$$
\begin{aligned}
& \frac{d}{d t} Y_{1}=f(\text { time }, Y, \text { parameters }) \\
& \ldots \\
& \frac{d}{d t} Y_{n}=f(\text { time }, Y, \text { parameters })
\end{aligned}
$$

- Numerical integration or steady-state estimation

Outline

Introduction
Objectives
Concepts
Minimalistic example
Specific features \& limitations
Applications
Summary
Hands-on part

Concepts

(1) Use of a table-based standard notation for ODE

- Built-in documentation
- Less redundancies
- Unified interface

Concepts
(1) Use of a table-based standard notation for ODE

- Built-in documentation
- Less redundancies
- Unified interface
(2) Automatic code generation
- Save \& fast array access
- Use of compiled code
- Portability

Concepts

Table-based model definition

Concepts

Table-based model definition

Components of tex or html documents

Concepts

Table-based model definition

Concepts

Table-based model definition

Outline

Introduction

Objectives
Concepts
Minimalistic example

Specific features \& limitations

Applications
Summary
Hands-on part

Minimalistic example

Modeled system

- Mixed reactor with constant volume V and flow rate Q
- Two species $\left(X_{1}, X_{2}\right)$ competing for dissolved resource S

Minimalistic example
Corresponding ODE

$$
\begin{array}{ll}
\frac{d}{d t} X_{1}=r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}}-X_{1} \cdot \frac{Q}{V} & \begin{array}{l}
\text { Growth } \\
\\
\frac{d}{d t} X_{2}
\end{array}=r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}}-X_{2} \cdot \frac{Q}{V} \\
\frac{d}{d t} S & =-c_{1} \cdot r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}}-c_{2} \cdot r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}}+\left(S_{\text {in }}-S\right) \cdot \frac{Q}{V}
\end{array}
$$

Minimalistic example

$$
\begin{array}{ll}
\frac{d}{d t} X_{1}=r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}}-X_{1} \cdot \frac{Q}{V} & \begin{array}{l}
\text { Growth } \\
\text { Im/Export }
\end{array} \\
\frac{d}{d t} X_{2}=r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}}-X_{2} \cdot \frac{Q}{V} & \\
\frac{d}{d t} S=-c_{1} \cdot r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}}-c_{2} \cdot r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}}+\left(S_{\text {in }}-S\right) \cdot \frac{Q}{V} \\
\frac{d}{d t}\left[\begin{array}{c}
X_{1} \\
X_{2} \\
S
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -X_{1} \\
0 & 1 & -X_{2} \\
-c_{1} & -c_{2} & S_{i n}-S
\end{array}\right] \cdot & {\left[\begin{array}{c}
r_{1} \cdot X_{1} \cdot S /\left(S+h_{1}\right) \\
r_{2} \cdot X_{2} \cdot S /\left(S+h_{2}\right) \\
Q / V
\end{array}\right]}
\end{array}
$$

Minimalistic example

Table of Processes

$$
\frac{d}{d t}\left[\begin{array}{c}
X_{1} \\
X_{2} \\
S
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -X_{1} \\
0 & 1 & -X_{2} \\
-c_{1} & -c_{2} & S_{i n}-S
\end{array}\right] \cdot\left[\begin{array}{c}
r_{1} \cdot X_{1} \cdot S /\left(S+h_{1}\right) \\
r_{2} \cdot X_{2} \cdot S /\left(S+h_{2}\right) \\
Q / V
\end{array}\right]
$$

modelxisx－LibreOffice Cale－a				
File	Edit View	ert Format Iools	Data Window H	
	A	B	c	D
1	name	unit	description	expression
2	growthx1	cells／ml／h	growth of $\mathrm{X1}$	r1＊X1＊monod（S，h1）
3	growthx2	cells／ml／h	growth of X2	r2＊X2＊monod（S，h2）
4	flushing	1／h	flushing	Q／V
めずロ		／soikel		

Minimalistic example

Table of stoichiometric factors

$$
\frac{d}{d t}\left[\begin{array}{c}
X_{1} \\
X_{2} \\
S
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -X_{1} \\
0 & 1 & -X_{2} \\
-c_{1} & -c_{2} & S_{i n}-S
\end{array}\right] \cdot\left[\begin{array}{c}
r_{1} \cdot X_{1} \cdot S /\left(S+h_{1}\right) \\
r_{2} \cdot X_{2} \cdot S /\left(S+h_{2}\right) \\
Q / V
\end{array}\right]
$$

Minimalistic example

Tables with declarations

Variables

>	model.xlsx - LibreOffice Calc	$-\square \quad x$

Parameters

File	$\underline{E d i t} \frac{\text { View }}{\mathrm{A}}$	$\begin{gathered} \text { Insert Format } \\ \text { B } \\ \hline \end{gathered}$	Tools Data $\underset{c}{\text { Window Help }}$	D	E
1	name	unit	description	tex	html
2	r1	1/h	growth rate 1	r_1	r₁
3	r2	1/h	growth rate 2	r_2	r₂
4	h1	$\mathrm{mg} / \mathrm{ml}$	half sat. spec. 1	h_1	h₁
5	h2	$\mathrm{mg} / \mathrm{ml}$	half sat. spec. 2	h_2	h₂
6	c1	$\mathrm{mg} / \mathrm{cell}$	stoich. of X_{1}	c_1	c₁
7	c2	$\mathrm{mg} / \mathrm{cell}$	stoich. of X2	c_2	c₂
8	Q	ml / h	flow rate	Q	Q
9	V	ml	volume	v	V
10	Sin	mg/ml	substrate in inflow	S_\{in\}	S_{in}

+ Functions

Minimalistic example

Code \& document generation

Table-based model definition

Minimalistic example

Auto-generated GUI

Outline

Introduction

Objectives

Concepts

Minimalistic example
Specific features \& limitations
Applications
Summary
Hands-on part

Specific features \& limitations

Support for PDE

$$
\frac{\partial c}{\partial t}=\underbrace{D \cdot \frac{\partial^{2} c}{\partial x^{2}}}_{\text {Dispersion }}-\underbrace{u \cdot \frac{\partial c}{\partial x}}_{\text {Advection }}+\underbrace{\underbrace{R}}_{\text {Reactions }}
$$

Specific features \& limitations

Support for PDE

$$
\frac{\partial c}{\partial t}=\underbrace{D \cdot \frac{\partial^{2} c}{\partial x^{2}}}_{\text {Dispersion }}-\underbrace{u \cdot \frac{\partial c}{\partial x}}_{\text {Advection }}+\underbrace{R}_{\text {Reactions }}
$$

Method-of-lines

$$
\frac{d c_{i}}{d t}=D \cdot \frac{\left(c_{i+1}-c_{i}\right)-\left(c_{i}-c_{i-1}\right)}{\Delta x^{2}}-u \cdot \frac{c_{i}-c_{i-1}}{\Delta x}+R_{i}
$$

Specific features \& limitations

Support for PDE

Method-of-lines

$$
\frac{d c_{i}}{d t}=D \cdot \frac{\left(c_{i+1}-c_{i}\right)-\left(c_{i}-c_{i-1}\right)}{\Delta x^{2}}-u \cdot \frac{c_{i}-c_{i-1}}{\Delta x}+R_{i}
$$

Specific features \& limitations

Support for PDE

Method-of-lines

$$
\frac{d c_{i}}{d t}=D \cdot \frac{\left(c_{i+1}-c_{i}\right)-\left(c_{i}-c_{i-1}\right)}{\Delta x^{2}}-u \cdot \frac{c_{i}-c_{i-1}}{\Delta x}+R_{i}
$$

Function-like syntax to access adjacent cells, e.g.
u / dx * (c - left(c))
foo(time) can appear in right hand side expressions

Actual functions must be defined

Analytical
Interpolation

- Use approxFun in R-based models
- Use rodeo-generated Fortran code

Known limitations

- No forced documentation for user-function arguments
- No built-in support for 2D or 3D models
- Generated code uses a Fortran 2008 feature

Specific features \& limitations

Known limitations

CRAN Package Check Results for Package rodeo
Last updated on 2016-04-28 06:47:39.

| Flavor | Version | T $_{\text {install }}$ | T $_{\text {check }}$ | T $_{\text {total }}$ | Status | Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| r-devel-linux-x86_64-debian-gcc | 0.3 | 1.18 | 18.93 | 20.11 | OK | |
| r-devel-linux-x86_64-fedora-clang | 0.3 | | | 34.64 | OK | |
| r-devel-linux-x86_64-fedora-gcc | 0.3 | | | 22.28 | OK | |
| r-devel-osx-x86_64-clang | 0.3 | | | 37.30 | OK | |
| r-devel-windows-ix86+x86_64 | 0.3 | 5.00 | 59.00 | 64.00 | OK | |
| r-patched-linux-x86_64 | 0.3 | 1.19 | 18.58 | 19.77 | OK | |
| r-patched-solaris-sparc | 0.3 | | | 184.30 | WARN | |
| r-patched-solaris-x86 | 0.3 | | | 41.20 | WARN | |
| r-release-linux-x86_64 | 0.3 | 1.36 | 21.82 | 23.18 | OK | |
| r-release-osx-x86_64-mavericks | 0.3 | | | | OK | |
| r-release-windows-ix86+x86_64 | 0.3 | 5.00 | 72.00 | 77.00 | OK | |
| r-oldrel-windows-ix86+x86_64 | 0.3 | 5.00 | 82.00 | 87.00 | OK | |

WARN: Compiler doesn't implement pointer initialization yet

Outline

Introduction

Objectives
Concepts
Minimalistic example
Specific features \& limitations
Applications
Summary
Hands-on part

Applications rodeo-based projects

Existing

- Lake ecology (0D)
- Sediment diagenesis
- Dynamics of E. coli
- Prey-predator systems

Applications rodeo-based projects

Existing

- Lake ecology (0D)
- Sediment diagenesis
- Dynamics of E. coli
- Prey-predator systems

Planned

- Lake ecology (1D)
- Activated sludge model

Applications rodeo-based projects

Existing

- Lake ecology (0D)
- Sediment diagenesis
- Dynamics of E. coli
- Prey-predator systems

Planned

- Lake ecology (1D)
- Activated sludge model

Applications

Ecological lake model

- Heavily based on BELAMO
- Applied to a shallow lake, $1.3 \mathrm{~km}^{2}, \mathrm{z}_{\text {mean }} 2.1 \mathrm{~m}$

Contribution of N_{2}-fixation to Nitrogen balance?

Applications

Ecological lake model

Non blue-greens

Other cyanobacteria

Total phytoplankton

Data: BTU \& WSA, Model: Omlin et al. (2001) modified by J. Feldbauer, M. Nisotaki, Y. Zhao

Applications

Applications

Applications

Antibiotic resistance

Strains present after long time

Transmission rate

Applications

Early diagenesis

Applications

Early diagenesis

Applications

Early diagenesis

Concentration
Δ increases
∇ decreases

- goes up or down

DIP: Dissolved inorg. P
IMP: Immobile inorg. P ODU: $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{HS}^{-}, \ldots$

Basic concepts borrowed from Soetaert et al. (1996)

Applications

Early diagenesis

- Phosphorus in pore water, observed
/// Simulated with different model structures

Outline

Introduction

Objectives
Concepts
Minimalistic example
Specific features \& limitations
Applications
Summary
Hands-on part

Summary

Scope Implementation of ODE models (+ 1D PDE)
Concepts Table-based notation \& code generation
Benefit Simplicity and performance
Uses Project work \& teaching

Package
https://cran.r-project.org/package=rodeo https://github.com/dkneis/rodeo
Examples http://dkneis.github.io http://limno-live.hydro.tu-dresden.de/

Thanks!

Sponsored by the Federal Ministry of Education and Research, Germany, Grant no. 0033W015EN, 02WU1351A

Outline

Introduction

Objectives
Concepts
Minimalistic example
Specific features \& limitations
Applications
Summary
Hands-on part

Hands-on part

Required software

- Recent R version
- Developer tools (Rtools on Windows)
- R packages
- install.packages('deSolve')
- install.packages('readxl')
- install.packages('rodeo')

Link to instructions on http://dkneis.github.io

Hands-on part rodeo objects

https://cran.r-project.org/package=rodeo

- rodeo class is a 'reference class'
- Creation: object <- new('rodeo', <data>)
- Usage: object\$method()

Hands-on part
 rodeo objects

https://cran.r-project.org/package=rodeo

- rodeo class is a 'reference class'
- Creation: object <- new('rodeo', <data>)
- Usage: object\$method()
install.packages('rodeo') \# done this already?
library('rodeo')
?rodeo
vignette('rodeo')

deSolve integrators

https://cran.r-project.org/package=deSolve

- Switch between stiff and non-stiff methods
- Structure of Jacobian can be specified
- Works with compiled code in shared library

Hands-on part
 deSolve integrators

https://cran.r-project.org/package=deSolve

- Switch between stiff and non-stiff methods
- Structure of Jacobian can be specified
- Works with compiled code in shared library

```
install.packages('deSolve') # done this already?
library('deSolve')
?lsoda
?ode
```


Hands-on part

Demo examples

- See links on http://dkneis.github.io
- Available in latest rodeo package (not on CRAN yet)

Hands-on part

Streeter-Phelps

```
OM Organic matter ( \(\mathrm{mg} / \mathrm{L}\) ) DO Dissolved oxygen ( \(\mathrm{mg} / \mathrm{L}\) )
```


Streeter, W. H. and Phelps, W. B. (1925): A study of the pollution and natural purification of the Ohio River. Public Health Bull. 146, US Public Health Service, Washington DC.
\rightarrow Essential extensions developed in past 90 years

Hands-on part

Streeter-Phelps

$$
\begin{aligned}
\frac{d}{d t} O M= & -k_{d} \cdot O M \\
\frac{d}{d t} D O= & -k_{d} \cdot O M \cdot s \\
& +k_{a} \cdot\left(D O_{s a t}-D O\right)
\end{aligned}
$$

S
k_{d}
k_{a}
s
$D O_{s a t}$

Units
d^{-1}
d^{-1}
Mass ratio mg / L

Descr.
Decay rate
Aeration rate
DO consumed per degraded OM
O_{2} saturation level

Hands-on part

Streeter-Phelps

deSolve output for OD rodeo models

is.matrix(out) \# TRUE
ncol(out) == $1+m \$ l e n V a r s()+m \$ l e n P r o s() ~ \# m: ~ m o d e l ~$
colnames(out) == c('time', m\$namesVars(), m\$namesPros())

Hands-on part

Advection-dispersion

Hands-on part

Advection-dispersion

deSolve output for 1D rodeo models

Hands-on part

Advection-dispersion

deSolve output for 1D rodeo models

\square Snapshot of spatial distribution
\square Breakthrough curve at particular station

Hands-on part

Table file formats

Delimited text

- Powerful editors (regular exp., syntax highlight)
- Version control
- Many processing options (${ }^{4} \mathrm{AT}_{\mathrm{E}} \mathrm{X}$, data base, ...)
- Portable (but newline \& encoding issues)

Spreadsheet - Tabular view

- All tables kept in a single file
- Portable (different issues)
\rightarrow Best used in combination

