

A code generator for ODE-based models

david.kneis@tu-dresden.de

Special seminar of the Systems Analysis and Modelling group at EAWAG, 2016-05-03

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

- Lake eutrophication
- Flood management
- Operational runoff forecasting
- Early diagenesis of lake sediments
- Fate of antibiotic resistant bacteria

 \rightarrow Several years of model/software development

- ► Best way to learn modeling is via model development.
- ► 'Monolithic codes' are hard to extend.
- ► Rising interest in structural uncertainty → Need for Re-implementations

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Objectives Documentation

- ► Often incomplete or outdated
- Mistakes in published equations
- Source code alone not sufficient
- \rightarrow Embedded / automatic documentation

Objectives Portability & life time

- ► Implementation in specific language / framework
- Impedes collaborative development
- Software undergoes aging
- \rightarrow True portability
- \rightarrow Equations to be separated from source code

- ► Access by index: Hard to read / maintain
- Access by name: Slow
- \rightarrow Combine the two options

- Interpreted code is convenient but relatively slow
- ▶ Need for high-performance (Optimization, Uncertainty, ...)
- \rightarrow Use compiled code sections

Objectives Redundant terms

- Repeated evaluation wastes time
- Code is difficult to maintain
- \rightarrow Use proper notation to reduce redundancies
- \rightarrow Let the compiler eliminate them

Objectives Various model interfaces

- ► Effort for users
- Individual pre-/post-processors
- Impedes coupling of models
- \rightarrow Unified interface

Objectives Wish list

- Built-in documentation
- True portability
- ► Save & fast array access

- Compiled code sections
- Less redundancies
- Unified interface

ightarrow rodeo is one attempt, among others, to achieve this

Objectives Scope

Models built on simultaneous ODE

$$\frac{d}{dt}Y_{1} = f(time, Y, parameters)$$

$$\dots$$

$$\frac{d}{dt}Y_{n} = f(time, Y, parameters)$$

Numerical integration or steady-state estimation

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

(1) Use of a table-based standard notation for ODE

- Built-in documentation
- Less redundancies
- Unified interface

(1) Use of a table-based standard notation for ODE

- Built-in documentation
- Less redundancies
- Unified interface
- (2) Automatic code generation
 - ► Save & fast array access
 - Use of compiled code
 - Portability

22

Table-based model definition

c –		stoi.csv - Li	breOffice Calc	×
<u>F</u> ile	Edit View	Insert Format	Tools Data Window Help	
	A	В	c	Ĩ
1	variable	process	expression	U
13	02	minO2_f	-stoi_O2_C * sol2liq(porosity)	
14	02	minO2_s	-stoi_O2_C * sol2liq(porosity)	8
15	02	oxNH3	-stoi_O2_NH3	J.
16	02	oxMnR	-stoi_O2_MnR	
17	02	oxFeR	-stoi_O2_FeR	
18	02	oxODU	-stoi_O2_ODU	
19	NO3	minNO3_f	-stoi_NO3_C * sol2liq(porosity)	
20	NO3	minNO3_s	-stoi_NO3_C * sol2liq(porosity)	
H 4 F	H Sheet1) 	C.

rodeo object

e	stoi.csv - Li	breOffice Calc 📃 🗖 🗙
<u>File Edit V</u> iew	<u>Insert</u> Format	Tools Data Window Help
A	В	C
1 variable	process	expression
13 02	minO2_f	-stoi_O2_C * sol2liq(porosity)
14 02	minO2_s	-stoi_O2_C * sol2liq(porosity)
15 02	oxNH3	-stoi_O2_NH3
16 02	oxMnR	-stoi_O2_MnR
17 02	oxFeR	-stoi_O2_FeR
18 02	OXODU	-stoi_O2_ODU
19 NO3	minNO3_f	-stoi_NO3_C * sol2liq(porosity)
20 NO3	minNO3 s	-stoi NO3 C * sol2lig(porosity)

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

- ▶ Mixed reactor with constant volume V and flow rate Q
- Two species (X_1, X_2) competing for dissolved resource S

Minimalistic example Corresponding ODE

$$\frac{d}{dt}X_{1} = r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - X_{1} \cdot \frac{Q}{V} \qquad \begin{array}{c} \text{Growth} \\ \text{Im/Export} \\ \frac{d}{dt}X_{2} = r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} - X_{2} \cdot \frac{Q}{V} \\ \frac{d}{dt}S = -c_{1} \cdot r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - c_{2} \cdot r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} + (S_{in} - S) \cdot \frac{Q}{V} \end{array}$$

Minimalistic example Matrix notation

$$\frac{d}{dt}X_{1} = r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - X_{1} \cdot \frac{Q}{V} \qquad \begin{array}{c} \text{Growth} \\ \text{Im/Export} \\ \frac{d}{dt}X_{2} = r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} - X_{2} \cdot \frac{Q}{V} \\ \frac{d}{dt}S = -c_{1} \cdot r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - c_{2} \cdot r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} + (S_{in} - S) \cdot \frac{Q}{V} \end{array}$$

$$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ S \end{bmatrix} = \begin{bmatrix} 1 & 0 & -X_1 \\ 0 & 1 & -X_2 \\ -c_1 & -c_2 & S_{in} - S \end{bmatrix} \cdot \begin{bmatrix} r_1 \cdot X_1 \cdot S/(S+h_1) \\ r_2 \cdot X_2 \cdot S/(S+h_2) \\ Q/V \end{bmatrix}$$

Minimalistic example Table of Processes

-o		model.xlsx - LibreOffice Calc									×				
<u>F</u> ile	Edit	<u>V</u> iew	Insert	Format	Tools	Data	<u>W</u> indow	<u>H</u> elp							
		Α		В			С						D		1
1	name		u	nit		desc	ription	ı	ex	рге	essi	ior	า		
2	дгоw	thX1	с	ells/ml	/h	дгоw	th of)	(1	٢1	*	Χ1	*	<pre>monod(S,</pre>	h1)	
3	дгоw	thX2	с	ells/ml	/h	дгоw	th of)	(2	г2	*	X2	*	<pre>monod(S,</pre>	h2)	
4	flus	hing	1	/h		flus	hing		Q	/ V	/				
Heb	H Vars	(pars /funs	pros /s	pi / 💠 /			_	_	-						

Minimalistic example Table of stoichiometric factors

$$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ S \end{bmatrix} = \begin{bmatrix} 1 & 0 & -X_1 \\ 0 & 1 & -X_2 \\ -c_1 & -c_2 & S_{in} - S \end{bmatrix} \cdot \begin{bmatrix} r_1 \cdot X_1 \cdot S/(S+h_1) \\ r_2 \cdot X_2 \cdot S/(S+h_2) \\ Q/V \end{bmatrix}$$

0		model.xls	sx - LibreOffice Calc		_ O X
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> ools <u>D</u>	ata <u>W</u> indow <u>H</u> elp		
	G	Н	I.	J	K
1	proc. \ var.	X1	X2	S	
2	growthX1	1	0	-c1	
3	growthX2	Θ	1	-c2	
4	flushing -X1		-X2	Sin - S	1
5					
6					
7					
8					
	N vars / pars / funs / pros S	toi / 🔶 /			(

Minimalistic example Tables with declarations

Variables

0			model.xlsx - LibreOffice Calc		- O X
<u>F</u> ile	Edit Vie	w <u>I</u> nsert F <u>o</u> rmal	t <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> elp		
	A	В	С	D	E
1	name	unit	description	tex	html
2	X1	cells/ml	abundance species 1	X_1	X ₁
3	X2	cells/ml	abundance species 2	X_2	X ₂
4	S	mg/l	substrate	S	S
	N Vars pars	funs (pros/stoi / 🍁 /			

Parameters

0			model.xlsx - LibreOffice Calc		- O ×
File	<u>E</u> dit <u>V</u> iew	Insert Format	<u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> elp		
	A	В	C	D	E
1	name	unit	description	tex	html
2	г1	1/h	growth rate 1	r_1	r ₁
3	г2	1/h	growth rate 2	r_2	r ₂
4	h1	mg/ml	half sat. spec. 1	h_1	h ₁
5	h2	mg/ml	half sat. spec. 2	h_2	h ₂
6	c1	mg/cell	stoich. of X1	c_1	c ₁
7	c2	mg/cell	stoich. of X2	c_2	c ₂
8	Q	ml/h	flow rate	Q	Q
9	v	ml	volume	V	V
10	Sin	mg/ml	substrate in inflow	S_{in}	S _{in}
	N vars pars funs	/pros/stoi/+/			1

+ Functions

Minimalistic example Code & document generation

Minimalistic example

Auto-generated GUI

0			ſ	odeoApp - Mozilla Firefox			
rodeoApp		×					
() 127.	0.0.1 :6268			😋 🔍 Şearch 😭 😭	ê 🛡	9	≡
	rodeoApp	Dynamic simulation	Stoich. matrix	General settings			
Parameters	Variables Init. M	ult. On		Set as reference	Show reference		
r1 08 r2 08 h1 01 h2 02 c1 1e06 c2 2e06	X1 1 1 X2 1 1 Substrate 0.1 1		State variable(s) 16-01 16+01 16+03 16+05	0 10 20 30 40 Hours	X1 X2 S		

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Specific features & limitations Support for PDE

Specific features & limitations Support for PDE

Method-of-lines

$$\frac{dc_i}{dt} = D \cdot \frac{(c_{i+1} - c_i) - (c_i - c_{i-1})}{\Delta x^2} - u \cdot \frac{c_i - c_{i-1}}{\Delta x} + R_i$$

Specific features & limitations Support for PDE

Method-of-lines

$$\frac{dc_i}{dt} = D \cdot \frac{(c_{i+1} - c_i) - (c_i - c_{i-1})}{\Delta x^2} - u \cdot \frac{c_i - c_{i-1}}{\Delta x} + R_i$$

Specific features & limitations Support for PDE

Method-of-lines

$$\frac{dc_i}{dt} = D \cdot \frac{(c_{i+1} - c_i) - (c_i - c_{i-1})}{\Delta x^2} - u \cdot \frac{c_i - c_{i-1}}{\Delta x} + R_i$$

Function-like syntax to access adjacent cells, e.g.

u / dx * (c - left(c))

Specific features & limitations Forcing functions

foo(time) can appear in right hand side expressions

Actual functions must be defined

Analytical Interpolation

- Use approxFun in R-based models
- Use rodeo-generated Fortran code

- ► No forced documentation for user-function arguments
- ► No built-in support for 2D or 3D models
- ► Generated code uses a Fortran 2008 feature

Specific features & limitations Known limitations

CRAN Package Check Results for Package rodeo

Last updated on 2016-04-28 06:47:39.

Flavor	Version	T _{install}	T _{check}	T _{total}	Status	Flags
r-devel-linux-x86_64-debian-gcc	0.3	1.18	18.93	20.11	<u>OK</u>	
r-devel-linux-x86_64-fedora-clang	0.3			34.64	OK	
r-devel-linux-x86_64-fedora-gcc	0.3			22.28	OK	
r-devel-osx-x86_64-clang	0.3			37.30	<u>OK</u>	
r-devel-windows-ix86+x86_64	0.3	5.00	59.00	64.00	OK	
r-patched-linux-x86_64	0.3	1.19	18.58	19.77	<u>OK</u>	
r-patched-solaris-sparc	0.3			184.30	WARN	
r-patched-solaris-x86	0.3			41.20	WARN	
r-release-linux-x86_64	0.3	1.36	21.82	23.18	OK	
r-release-osx-x86_64-mavericks	0.3				<u>OK</u>	
r-release-windows-ix86+x86_64	0.3	5.00	72.00	77.00	<u>OK</u>	
r-oldrel-windows-ix86+x86_64	0.3	5.00	82.00	87.00	OK	

WARN: Compiler doesn't implement pointer initialization yet

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Applications rodeo-based projects

Existing

- ► Lake ecology (0D)
- Sediment diagenesis
- Dynamics of E. coli
- Prey-predator systems

Applications rodeo-based projects

45

Existing

- ► Lake ecology (0D)
- Sediment diagenesis
- ► Dynamics of E. coli
- Prey-predator systems

Planned

- ► Lake ecology (1D)
- Activated sludge model

Applications rodeo-based projects

46

Existing

- Lake ecology (0D)
- Sediment diagenesis
- Dynamics of E. coli
- Prey-predator systems

Planned

- ► Lake ecology (1D)
- Activated sludge model

Applications Ecological lake model

- Heavily based on BELAMO
- ► Applied to a shallow lake, 1.3 km², z_{mean} 2.1 m

Contribution of N2-fixation to Nitrogen balance?

Applications Ecological lake model

Data: BTU & WSA, Model: Omlin et al. (2001) modified by J. Feldbauer, M. Nisotaki, Y. Zhao

- Transmission of ARG
 Loss of ARG
- Adaption

	Corg	DIP	IMP	NH ⁺ 4	sorb. NH_4^+	NO [_]	02	ODU
Settling								
Mineral. (O_2)	▼						▼	
Mineral. (NO_3^-)	▼					▼		
Mineral. (anox.)	▼							
Nitrification				▼			▼	
Oxidation w. O ₂							▼	▼
Oxidation w. NO_3^-						▼		▼
P-Immobilization		▼						
P-Remobilization			▼					
NH ₄ ⁺ -Sorption				▼				
Advection \downarrow	•	•	•	•	•	•	•	•
Advection \uparrow		•		•		•	•	•
Diffus. transport	•	•	•	•	•	•	•	•
Diffus. at surface		•		•		•	•	•
Bioirrigation		•		•		•	•	•

Concentration

- 🔺 increases
- ▼ decreases
- goes up or down
- DIP: Dissolved inorg. P IMP: Immobile inorg. P ODU: Mn²⁺, Fe²⁺, HS⁻, ...

Basic concepts borrowed from Soetaert et al. (1996)

Phosphorus in pore water, observed

/// Simulated with different model structures

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Summary

- Scope Implementation of ODE models (+ 1D PDE)
- Concepts Table-based notation & code generation
- Benefit Simplicity and performance
- Uses Project work & teaching

Package https://cran.r-project.org/package=rodeo
https://github.com/dkneis/rodeo
Examples http://dkneis.github.io
http://limno-live.hydro.tu-dresden.de/

Thanks !

Sponsored by the Federal Ministry of Education and Research, Germany, Grant no. 0033W015EN, 02WU1351A

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Hands-on part Required software

- Recent R version
- Developer tools (Rtools on Windows)
- R packages
 - install.packages('deSolve')
 - install.packages('readxl')
 - install.packages('rodeo')

Link to instructions on http://dkneis.github.io

https://cran.r-project.org/package=rodeo

- rodeo class is a 'reference class'
- Creation: object <- new('rodeo', <data>)
- Usage: object\$method()

https://cran.r-project.org/package=rodeo

- rodeo class is a 'reference class'
- Creation: object <- new('rodeo', <data>)
- Usage: object\$method()

```
install.packages('rodeo') # done this already?
library('rodeo')
?rodeo
vignette('rodeo')
```

Hands-on part deSolve integrators

https://cran.r-project.org/package=deSolve

- Switch between stiff and non-stiff methods
- Structure of Jacobian can be specified
- ► Works with compiled code in shared library

Hands-on part deSolve integrators

https://cran.r-project.org/package=deSolve

- Switch between stiff and non-stiff methods
- Structure of Jacobian can be specified
- ► Works with compiled code in shared library

```
install.packages('deSolve') # done this already?
library('deSolve')
?lsoda
```

?ode

- See links on http://dkneis.github.io
- ► Available in latest rodeo package (not on CRAN yet)

Hands-on part Streeter-Phelps

Streeter, W. H. and Phelps, W. B. (1925): A study of the pollution and natural purification of the Ohio River. Public Health Bull. 146, US Public Health Service, Washington DC.

 \rightarrow Essential extensions developed in past 90 years

Hands-on part Streeter-Phelps

$$\frac{d}{dt}OM = -k_d \cdot OM$$
$$\frac{d}{dt}DO = -k_d \cdot OM \cdot s$$
$$+k_a \cdot (DO_{sat} - DO)$$

Units	Descr.
d^{-1}	Decay rate
d^{-1}	Aeration rate
Mass ratio	DO consumed per degraded OM
mg/L	O_2 saturation level
	Units d ⁻¹ d ⁻¹ Mass ratio mg/L

Hands-on part Streeter-Phelps

deSolve output for $\mathsf{OD}\xspace$ models

is.matrix(out) # TRUE
ncol(out) == 1 + m\$lenVars() + m\$lenPros() # m: model
colnames(out) == c('time', m\$namesVars(), m\$namesPros())

deSolve output for 1D rodeo models

ncol(out) == 1 + m\$lenVars() * nBox + m\$lenPros() * nBox

deSolve output for 1D rodeo models

time	A.1	A.2	 C.1	C.2	X.1	X.2	 Z.1	Z.2

- Snapshot of spatial distribution
- Breakthrough curve at particular station

Hands-on part Table file formats

79

Delimited text

- ► Powerful editors (regular exp., syntax highlight)
- Version control
- ▶ Many processing options (LATEX, data base, ...)
- ► Portable (but newline & encoding issues)
- Spreadsheet

 Tabular view
 - All tables kept in a single file
 - Portable (different issues)
- \rightarrow Best used in combination